Course Programme 2011 - 2012

JM Burgerscentrum
Research School for Fluid Mechanics

TUD, TUE, UT, RUG, UL, WUR, UU
Introduction

Structure of the PhD programme

- Purpose of the PhD programme
- Structure of the training programme
- MSc degree courses
- JMBC PhD courses
- Workshops, summer schools, seminars or course of other organisations
- Individual training programme
- Career orientation

Registration for JMBC PhD Courses

- Conditions
- Fees
- Registration
- Certificate
- Course evaluation form

Course Programme 2010 - 2011

- JMBC PhD courses
 - Fluid structure interaction
 - PIV Delft
 - Compressible flows
 - Upscaling techniques and homogenization
 - CFD 1
 - Computational multiphase flow
MSc degree Courses

• General fluid mechanics 22
• Compressible flows 23
• Multiphase flow, dispersed media and rheology 25
• Numerical computations and modelling 29
• Theory of chaos and dynamical systems 33
• Combustion 35
• Turbulence 39
• Waves and free surface flows 41
• Micro-scale fluid mechanics 44
• Experimental techniques in fluid mechanics 45

Who and Where 47
Introduction

This is the guide for the training programme especially developed for the training of the PhD students of the JM Burgerscentrum, Dutch research school on fluid mechanics. The guide describes the general idea of the PhD programme and presents a framework in which individual training schedules can be developed. It gives a description of the courses in the year 2011-2012, with information about the conditions to participate and instructions for registration. As mentioned, the courses are in particular meant for PhD students of the JMBC. However, also PhD students from other research schools and post-docs can participate. Moreover, persons from industries and technological institutes can also attend the courses. Additional information about the courses will be announced in the JMBC Newsletter, which appears three times per year. Information about courses and more general information about the JM Burgerscentrum can also be found on our website www.jmburgerscentrum.nl

Prof.dr.ir. G Ooms
Scientific director
Structure of the PhD programme
Structure of the PhD programme

Purpose of the PhD programme

The purpose of the PhD programme of the JM Burgerscentrum is the development of PhD students into independent researchers in the field of fluid mechanics. To reach this goal a thorough and fundamental knowledge of fluid-mechanics and their mathematical and numerical modelling is required, as well as the ability to further develop this knowledge and to apply it to solve scientific and technical problems. An important part of the PhD programme consists of the execution of a scientific research project under the supervision of an expert of the JMBC. That part is not discussed in this guide. A smaller part, of the order of half a year, consists of the participation in courses. The details of that part of the programme (the training programme) are given in this guide.

Structure of the training programme

The training programme gives a framework, in which individual training schemes can be developed. It contains the following three components:

- MSc degree courses
- PhD degree courses
- Workshops, summer schools, seminars.

The different components are meant for broadening or deepening of knowledge, and also for specialisation in certain areas of fluid mechanics. Individual training programmes are composed from elements of the three components. In the next paragraphs the three components are discussed.

MSc degree courses

The MSc degree courses are meant for PhD students (or other interested persons), who have no earlier formal training in fluid mechanics. The courses will bring those PhD students to the same level of knowledge in fluid mechanics as PhD students who did receive their MSc degree in fluid mechanics. The courses are usually selected from the advanced courses of the study programme for the MSc degree. An overview of the most relevant MSc degree courses are given in this guide ordered according to the main research themes of the JMBC. Information about time and place of these courses can be obtained from the contact persons mentioned in the course descriptions given in this guide, or can be found in the study guides of the different universities participating in the JMBC.
The number of ECTS points for the MSc degree courses to be included in an individual training programme depends on the MSc study programme of the individual. Usually it is about 9 to 15 ECTS points (each ECTS point is approximately 27 hours of study for the PhD student).

JMBC PhD courses

For a PhD student it is essential to deepen his/her knowledge in fluid mechanics to a level significantly higher than that of a person with a MSc degree in fluid mechanics. The PhD degree courses of the JM Burgerscentrum fulfil this purpose. The deepening of knowledge is not restricted to the area of fluid mechanics, to which the research project of a PhD student belongs. The idea of the PhD degree courses is to continue the formal training of the PhD student in a number of areas in the field of fluid mechanics, but on a post-graduate level. After his/her PhD degree the PhD student must be able to quickly acquaint him (her) self with a new area of fluid mechanics and solve problems in that area. As a consequence each PhD student must at least participate in three PhD degree courses. In consultation with the supervisor a PhD student can decide to follow more courses. The number of ECTS points connected to the PhD degree courses must at least be 9. The content of the courses is composed in such a way, that the courses can be followed by all PhD students (independent of their knowledge from their MSc degree programme).

The different PhD degree courses of the JM Burgerscentrum are usually given once every two years, dependent on the number of participants. The courses are concentrated in time, usually during one week. The courses are given by the senior staff members of the JMBC, but also by (internationally well-known) guest lecturers. They determine the number of ECTS points for their course. The courses can contain several elements: theoretical training, own work, demonstrations, etc. An active role of the participants is stimulated.

Workshops, summer schools, seminars or courses of other organisations

Besides MSc degree courses and PhD degree courses there is also a less-structural part of the training programme of the JM Burgerscentrum, consisting of workshops, summer schools and seminars. They can be very valuable for the education of the PhD student, and will usually be in the area of fluid mechanics to which the research project of the PhD student belongs. It is, in particular, recommended that a PhD student participate in summer schools. The JM Burgerscentrum organises regularly a summer school in a different area of fluid mechanics. Another component can be courses, not organised by the JM Burgerscentrum but by another organisation (courses from the Von Karman institute, ERCOFTAC, EUROMECH, etc.). The number of ECTS points of this part of the training programme will on average be 9.
Individual training programme

The total training load per PhD student is approximately 30 ECTS points. Deviations are of course possible; a minimum of 22.5 ECTS points is necessary, there is a maximum of 37.5 ECTS points. Taking these rules into account an individual training programme can be scheduled by a PhD student in consultation with his/her supervisor. The programme gives a listing of the components and their timing. It is recommended to set-up the programme during the appointment of the PhD student. The supervisor decides, whether exams about the followed courses are necessary. (Each PhD course counts for 3 ECTS points)

An example of a training programme (for a PhD student without a fluid-mechanics background) is as follows:

1st year
MSc degree courses 12 ECTS points
PhD degree courses 6 ECTS points
Workshop, etc. 1.5 ECTS points

2nd year
PhD degree courses 3 ECTS points
Workshop, etc. 1.5 ECTS points

3rd year
Workshop, etc. 3 ECTS points

4th year
Workshop, etc. 3 ECTS points

An example of a training programme (for a PhD student with a fluid-mechanics background) is as follows:

1st year
PhD-degree courses 9 ECTS points
Workshop, etc. 1.5 ECTS points

2nd year
PhD-degree courses 9 ECTS points
Workshop, etc. 1.5 ECTS points

3rd year
Workshop, etc. 3 ECTS points

4th year
Workshop, etc. 3 ECTS points

Career orientation

It is important that PhD students prepare themselves well for their future job after finishing their PhD project. Therefore each PhD student selects in consultation with his/her supervisor a course dedicated to ‘career orientation’ and follows this course during the third or fourth year of his/her project. Such courses are given by universities and by FOM. Via the websites of universities and FOM more details about the courses can be found. As examples some web addresses are given below:

TUD www.tudelft.nl/tumobiel
TUE http://w3.tue.nl/en/services/dpo/career_and_development/phd_students/career_development/
UT www.utwente.nl/cursusaanbod/thema/ontwikkeling/loopbaan
RUG www.rug.nl/medewerkers/voorzieningen/cursussen/cursussenMenO/cursussen/careerPlanning
RUN www.ru.nl/studenten/na_je_studie/inleiding/na_je_studie/
UL www.bul.leidenuniv.nl/
WUR www.phd.wu.nl
FOM/STW www.fom.nl (search for "Brochure Plan uw Toekomst")

Structure of the PhD programme - 14
Registration for JMBC PhD courses
Registration for JMBC PhD courses

Conditions

The PhD degree courses organised by the JM Burgerscentrum are in the first place meant for the PhD students of the JM Burgerscentrum. They have priority with respect to registration for these courses. However, as mentioned, also PhD students from other research schools, post-doc’s and staff members from industries and technological institutes can participate.

Fees

- 250 Euro | Officially registered JMBC PhD students. Incl. course material, lunches, 1 general diner, travel expenses, and (if necessary) hotel accommodation.
- 250 Euro | Dutch PhD students, scientific staff, post doc’s, post-graduate students from universities. Incl. course material, lunches and 1 general diner. Travel expenses and hotel accommodation are not included.
- 400 Euro | International PhD students. Incl. course material, lunches and 1 general diner. Travel expenses and hotel accommodation are not included.
- 1.000 Euro | Staff members from industries, technological institutes, or other interested persons. Incl. course material, lunches and 1 general diner. Travel expenses and hotel accommodation are not included.

Registration

Registration is possible by filling in the online registration form on www.jmburgerscentrum.nl (Registration). The registration form is only necessary for the JMBC PhD courses.

Certificate

At request a participant in a JMBC course can receive from the JMBC secretariat a certificate concerning his/her participation.

Course evaluation form

Each participant of a JMBC course will receive from the JMBC secretariat a hard copy of the course evaluation form with the request to fill it in as soon as possible and to send it back to the JMBC secretariat. There is also the possibility to fill in the form via the website of the JMBC www.jmburgerscentrum.org (Registration). The evaluation form is anonymous. The JMBC scientific director will discuss the evaluation results with the course leader.
Overview of the courses for the academic year 2011-2012

- 29 August - 2 September 2011 Fluid structure interactions
- 24 - 28 October 2011 PIV Delft
- November 2011 Compressible flows
- 14 - 18 November 2011 Upscaling techniques and homogenization
- January 2012 CFD 1
- April 2012 Computational multiphase flow

29 August - 2 September 2011
Fluid structure interactions
Prof.dr.ir. H Bijl
August 29 - September 2 we organize a JMBC course on numerical solution techniques for fluid-structure interaction problems. Apart from lectures on theory, the course also includes exercises and computer practical sessions where the participant can work with the theory and computational methods introduced. The course is held at Delft University of Technology; Faculty Building/room TBA
Topics addressed include
Model equations: Arbitrary Lagrangian-Eulerian formulation, Geometric Conservation Law
Spatial coupling: non-matching meshes, interface interpolation, software coupling
Partitioned simulations: loose/strong coupling, stability, sub-iterating
Temporal coupling: high order temporal coupling
Mesh deformation: mesh connectivity based / point-by-point methods
Application: FSI in bloodflow: Fictitious domain, 1D-3D coupling
For more information contact
H Bijl | 015 278 5373 | h.bijl@tudelft.nl

24 - 28 October 2011
PIV Delft
Dr.ir. C Poelma and prof.dr.ir. J Westerweel
Particle Image Velocimetry has rapidly become the standard method for measuring fluid velocities in both fundamental and applied research. In October 2009, a one-week course dedicated entirely to PIV was taught at the Delft University of Technology. We plan to teach this course again in the fall of 2011. During the course, the fundamentals of the technique will be taught, including applications in particular fields: microfluidics, turbulence, multiphase flows and aerodynamics.
Next to lectures, there will be a number of practical sessions where the participants can practice their skills and see some state-of-art facilities (e.g. tomographic PIV, high-speed PIV). The course is primarily targeted at PhD students from the JMBC, who will get priority when registering: due to limitations on the available space in the practical sessions, the maximum number of participants is 35. Others interested (postdocs, faculty, researchers from institutes and industry) are welcome to apply as well, but priority is given to JMBC PhD students. Apart from a basic understanding of fluid mechanics, there is no prerequisite knowledge. Topics: components (tracers, lasers, optics, cameras), fundamentals (cross-correlation, image density, pair loss), stereoscopic PIV, multiphase flows, laser-induced fluorescence, microfluidics, high-speed systems, volumetric methods (3D-PTV, tomographic PIV, holographic PIV), advanced processing methods (multigrid methods, deforming windows, correlation averaging), post-processing (validation, estimation of vorticity, detecting coherent structures), design & optimization of PIV systems, practical sessions. NB: this course does not replace the yearly course at DLR (Göttingen). Up-to-date info, www.ahd.tudelft.nl/piv

For more information contact
C Poelma | 015 278 2620 | c.poelma@tudelft.nl

November 2011
Compressible flows
Prof.dr. F Scarano and Prof.dr.ir. HWM Hoeijmakers

For more information contact
F Scarano | 015 278 9111 | f.scarano@tudelft.nl

14 - 18 November 2011
Upscaling techniques and homogenization
Dr. IS Pop and dr. A Muntean
The course will present some basic mathematical techniques for the upscaling of models in complex domains, or involving highly oscillatory characteristics. Such problems appear as mathematical models for many real-world applications. Typical examples in this sense are the flow, diffusion, reaction and adsorption in porous media (e.g. in the sub-surface). This lecture provides appropriate techniques for a rational derivation of macro-scale models (effective coefficients and equations) starting from the micro scale. A particular emphasis will be on asymptotic and numerical homogenization. In the first instance, these techniques will be applied to relevant mathematical models describing diffusion in layered and perforated media; diffusion, convection, reaction and adsorption in media with a complex microstructure; fluid flow through porous media (Darcy law). Next, more complex situations as encountered in micromechanics (elastic composite materials), concrete corrosion, or enhanced oil recovery will be considered. The course is addressed to PhD students and postdoctoral researchers working on fluid-mechanics, chemical and mechanical engineering as well as geo-sciences, informatics or mathematics.
It requires the standard mathematical background (calculus, differential equations) as taught at undergraduate/MSc. level. We strongly encourage the participants to bring (multi scale) problems of their particular interest to the attention of all participants. To this aim, poster sessions will be organized. Recommended reading: Homogenization and porous media. Edited by Ulrich Hornung. Interdisciplinary Applied Mathematics, 6. Springer-Verlag, New York, 1997.

For more information contact
I Pop | 040 247 5516 | i.pop@tue.nl

23 - 27 January 2012

CFD 1

Prof. dr. A.E.P. Veldman, RUG, prof. dr. ir. B. Koren, CWI/RUL and dr. ir. M.I. Gerritsma, TUD

The course discusses the basic methods for solving the equations that describe the motion of fluids. It is organized as a series of lectures and computer exercises. The basic model problem is the convection-diffusion equation with dominating convection. A number of spatial discretization methods (non-uniform grids) will be discussed with their pros and cons (upwind/central, lower/higher order, finite-difference/finte-volume). Also the stability and accuracy of time-integration methods is shortly discussed. A next step is to study discontinuous solutions of the Euler equations, with focus on the numerical Riemann problem. Several numerical schemes for calculating shocks and contact-discontinuities will be presented; the concept of non-linear limiters is introduced. Finally, the incompressible Navier-Stokes equations are discussed. The positioning of the computational grid is assessed (staggered grids), as well as the treatment of boundary conditions. Also the use of mimetic methods for unstructured grids is explained. An application is the direct numerical simulation of turbulent flow.

For more information see www.jmburgerscentrum.nl

For more information contact
AEP Veldman | 050 363 3988 | a.e.p.veldman@rug.nl

April 2012

Computational multiphase flow

Prof. dr. ir. RAWM Henkes

Overview of fundamentals, industrial applications, and simulation packages

Target audience: PhD students of the JMBC, fluid flow engineers in industry and research institutes, and others interested in the topic

Lecturers: various, incl. H Hoeijmakers, H Kuipers, R Mudde, L Portela, K Vuijk, R Henkes

Multiphase flow denotes the combined transport of gas, liquid, and particles. The aim of this 3-day course is to give a broad overview of the possibilities and limitations of physical-numerical modelling and prediction of Multiphase Flows.
This includes (1) fundamentals of physical models and their numerical representation and solvers, (2) application of Computational Fluid Dynamics to a wide range of environmental and industrial processes driven by multiphase flow, (3) assessment of a number of CFD packages widely used to solve industrial problems. At the end of the course the participants will have a good awareness of the types of computational methods, with their specific accuracy, that can be used for multiphase flows occurring in industry. This will help them to build realistic expectations for their own specific practical problems, which might be even more complex than the examples treated in the course. Participants will also be able to acknowledge gaps in our current knowledge, which may help them to define new future research directions.

For more information see www.jmburgerscentrum.nl

For more information contact
RAWM Henkes | 015 278 1323 | r.a.w.m.henkes@tudelft.nl
MSc degree courses

General fluid mechanics

Advanced fluid mechanics I (357001)

Dr. D van der Meer, UT
The objective of this course is to acquire a firm base in classical fluid mechanics. The emphasis is on analytical solutions and their physical implications. Advanced Fluid Mechanics will serve as an introduction to the basic equations and phenomena needed in CFD, turbulence, acoustics and granular flows. Subjects: Conservation laws, vorticity, potential flow in 2D and 3D, conformal mapping and 2D flow, Zhukovsky airfoils, waves, shallow water equations, flow at low Reynolds number, Stokes and Oseen solutions, Hele-Shaw flow, flow at high Reynolds number, boundary layers, self-similarity, hydrodynamic stability, compressible flow, Laval nozzle, shock waves.

Fore more information contact
D van der Meer | 053 489 2387 | d.vandermeer@utwente.nl
Compressible flows

Gasdynamics I (AE4-140)

Prof.dr.ir. PG Bakker, TUD
1. Introduction: notations, definitions, equations of state, entropy, speed of sound,
 integral- and differential form of governing equations, Euler equations, entropy equation,
 ‘weak’ solutions, entropy condition I, moving shocks, (x,t)- diagram, entropy conditions
 II, III, numerical treatment.
2. One-dimensional unsteady flow, linear: acoustic waves, d’Alember’s solution,
 characteristic method, discontinuities, Piston problem, simple waves, Riemann’s initial
 value problem.
3. One-dimensional unsteady flow, non-linear: characteristic equations, Riemann invariants,
 simple waves, Riemann’s initial value problem, Hugoniot- and Poisson curves, iterative
 solution of Riemann problem, characteristic method, compression wave, wave interaction,
 analogy with 2D-steady.
4. Burgers equation for simple waves: non-viscous Burgers equation, shock equation, shock
 formation, entropy conditions, viscous Burgers equation, wave interactions.
5. Traffic waves: definitions, concepts traffic equation, characteristics and discontinuities,
 traffic light, chain collision
For more information contact
PG Bakker | 015 278 5907 | P.G. Bakker@tudelft.nl

Gasdynamics II (AE4-141)

Prof.dr.ir. PG Bakker, TUD
1. Two-dimensional unsteady flows: flow equations vector form of flow equations,
 diagonalisation, left- and right eigenvectors, 2D wave propagation, enveloping of waves.
2. Non-viscous steady 2D flow: diagonalisation, characteristic directions, hyperbolicity,
 ‘time-like’ and ‘space-like’, flow aligned co-ordinates, compatibility, characteristic
 methods, Prandtl-Meyer expansion, nozzle design, transonic nozzle flow.
3. Burgers equation for 2D simple waves: non-viscous Burgers equation, shock formation,
 biconvex airfoil, asymptotic behaviour of shocks, wave interaction.
4. Qualitative theory of 1D viscous flows, equations governing quasi 1D viscous flows,
 qualitative theory of 2nd order dynamical systems, qualitative aspects of the solutions of
 the quasi 1D flow equations, frictional effects, Fanno equation, internal structure of a
 shock wave.
For more information contact
PG Bakker | 015 278 5907 | P.G. Bakker@tudelft.nl
Aeroacoustics (115440)

Dr. SJ Rienstra, TUE
Aeroacoustics is the study of sound production by unsteady flows of gas and liquids. After an introduction of basic acoustical concepts and a short discussion of wave propagation in pipes and resonators the course focuses on Lighthill’s theory of sound production by flows. Vortex sound theory will be introduced on the basis of an energy balance. The theory is illustrated by simple applications to the clarinet, thermoacoustic instability, acoustical behaviour of air bubbles in water, whistling phenomena……etc.

For more information contact
SJ Rienstra | 040 247 4603 | s.w.riemstra@tue.nl
Multiphase flow, dispersed media and rheology

Multiphase flow and heat transfer (AP3181D)

Dr.Eng. LM Portela, TUD
The course on multiphase flow covers basic parameters for design and operation of process equipment, interfacial phenomena, waves in two-phase flow, dimensionless numbers for scale-up, flow regime dependent modelling, two-phase pressure gradients and phase hold-ups for separated, slug and bubble gas/liquid pipe flow and flow regime maps for inclined tube flows. It will furthermore provide introductions to dispersed gas/liquid flows in simple and complex geometries and dispersed flows with solid particles. Moreover, it will address the two-phase heat transfer aspects of boiling liquids. The course is concluded with a brief introduction to the course on Computational Multiphase Flows.

For more information contact
LM Portela | 015 278 2842 | l.portela@tudelft.nl

Continuum mechanics

Dr. D van den Ende, UT
The continuum model, kinematics, conservatoin laws, the stress tensor, simple materials, special constitutive equations, special types of flow, rheological material functions. This course will not be lectured on specific dates, but on an individual base in the form of self-study, after making an appointment with Dr. D van den Ende.

For more information contact
D van den Ende | 053 489 3105 | h.t.m.vandenende@utwente.nl

Capillarity and Wetting Phenomena

Prof.dr. F Mugele, UT
Capillarity is the study of the interfaces between two immiscible fluids or a fluid and a solid. Topics of this course are surface tension, capillary rise, thin films, wetting and dewetting, electrowetting, capillary waves, surfactants, special interfaces. Previous knowledge: Physics of Fluids or another introductory course in fluid mechanics (required). Course material: Pierre-Gilles de Gennes, Françoise Brochard-Wyart, David Quéré, Capillarity and Wetting Phenomena, Springer Science and Business Media, New York USA (2003). Examination: exercises during the course, written/oral exam at the end of the course. The course will be given between september and end of november.

For more information contact
F Mugele | 053 489 3094 | f.mugele@utwente.nl
Elementary two-phase flow with heat transfer (4P540)

Dr. CWM van der Geld, TUE
This is an introductory course in two-phase flow. Averaging procedures and correlations to be used in practise to compute f.e. pressure drop and heat transfer with boiling. Distribution parameter to extend simple one-dimensional approximate computations. Forces on particles and bubbles, and trajectory computations. Lagally theorem, lift forces and variational approaches. Basic thermodynamics using the grand canonical to introduce interfaces and surface tension. Excess free energy and demonstration that boiling occurs on nucleation sites or at boundaries first. Classic two-component mass diffusion theory: Stefan, filmmodel of the air layer with condensation. Interaction of heat and mass transfer in the rapid evaporation of drops. Mollier diagram. Dropwise condensation.
For more information contact
CWM van der Geld | 040 247 2923 | c.w.m.v.d.geld@tue.nl

Nanoparticulate Materials

Prof.dr. A Schmidt-Ott
- What is special about nanoparticulate and nanophase materials? Basic properties (electrical, optical, magnetic, mechanical, chemical) and size effects
- Synthesis of nanoparticulate and nanophase materials, e.g.in flow reactors
- Characterization of nanoparticulate and nanophase materials, including on-line characterization of particles in gas suspension
- present and future applications of nano-composites including solar cells, fuel cells, hydrogen storage, catalysis, magnetic, optical, structural materials
For more information contact
A Schmidt-Ott | 015 278 3540 | a.schmidt-ott@tudelft.nl

Computational Multiphase Flow (AP3551)

Dr.Eng. LM Portela, TUD
This course consists of 12 weeks, starting in the begining of September, in which the behaviour and description of flows, whereby one phase is dispersed in another phase, will be discussed. The Euler-Lagrange and Euler-ÅEuler approaches to dispersed multiphase flows will be discussed. During the course, the stuÅdents will develop a small CFD code, to which subsequently the various important aspects of dispersed flows will be added. The influence of different interaction forces (drag, lift, added mass, etc.) between the phases and the effects of turbulence will be studied using the CFDÅ code.
For more information contact
LM Portela | 015 2782842 | L.Portela@tudelft.nl
Transport phenomena in conversion processes and manufacturing (st474)

Prof.dr.ir. HEA van den Akker, TUD
Various aspects of manufacturing and conversion processes will be discussed in the course. The topics are: viscous flows in quais 1D thin layers, extruders, jets and sprays, entrainment, particle motions, two-phase flow, turbulence, stirred vessels, heat and mass transfer. Applications are found in industrial processes and product manufacturing.
For more information contact
HEA van den Akker | 015 278 5000 | h.e.a.vandenakker@tudelft.nl

Multiphase Reactor Engineering (CH3062)

Dr.ir. JR van Ommen, TUD
This is an elective course for MSc en PhD students, taught in the first quarter of the academic year. The course treats the various types of multiphase reactors, such as packed beds, fluidized beds, and bubble columns. A large part of the course consists of modelling assignments, to be made in teams of two or three persons (3 ECTS).
For more information contact
JR van Ommen | 015 278 2133 | j.r.vanommen@tudelft.nl

Nanofluidics

Prof.dr.ir. F Mugele, dr. J Eijkel, dr. S Kooi, UT
Introduction: fundamental aspects, intrinsic length scales & geometry applications.
Solid-liquid interfaces: interactions, specific adsorption/desorption, electrolytes near interfaces
Hydrodynamics at small scales: laminar flow; slip vs. no-slip; mixing at small scales
Three-phase systems: capillary forces, (control of) wetting, superhydrophobicity
Electrokinetic effects: electroosmotic pumping, electroviscous effect
Electrophoresis and separation techniques
Colloids (I): chemistry, stability, interactions
Colloids (II): physical properties, self-assembly
Study material: review articles and course script.
Evaluation: assignments during course; final oral presentation about a specific subject
For more information contact
F Mugele | 053 489 3094 | f.mugele@utwente.nl
Physics of Bubbles (357201)

Dr. M Versluis, UT

The Bubbles course treats the physics of single bubble and describes the behavior of multiple bubbles and bubble clouds. The course treats the forces on bubbles, the acoustics of bubbles and bubble clouds, microstreaming and jets due to bubble oscillation, cavitation and bubble collapse. The course includes lectures on the use of bubbles in medical imaging and in molecular imaging with ultrasound. Also therapeutic applications of bubbles are discussed, along with bubbles in process technology and bubble formation and bubble dynamics in microfluidic devices and nanotechnology. Recommended book: Cavitation and bubble dynamics by Christopher Earls Brennen.

Further information contact
M Versluis | 053 489 6824 | m.versluis@utwente.nl

Granular Matter (358003)

Dr. JH Snoeijer, UT

Granular matter can be considered as the fourth state of matter: Depending on the situation, granular matter can behave as a solid, a liquid, or a gas, but always has its own peculiar properties. When dry sand is poured, it acts as a fluid. The pile on which it is poured is solid-like, stabilized by forces in between the sand beads. When dry sand is strongly shaken or fluidized through a gas stream, it behaves gas-like. This course gives an introduction to granular matter in its various forms.

Further information contact
JH Snoeijer | 053 489 3085 | j.h.snoeijer@tnw.utwente.nl
Numerical computations and modelling

Elements of computational fluid dynamics A (WI4011)

Dr.ir. DR van der Heul, TUD
Topics: The governing equations; finite volume methods; stability theory; singular perturbations; numerical methods for the incompressible Navier-Stokes equations; efficient iterative solution methods. MATLAB software is available at http://ta.twi.tudelft.nl/users/wesseling For more information look at http://ta.twi.tudelft.nl/users/wesseling/cfdcourse.html
For more information contact
DR van der Heul | 020 511 3113 | d.r.vanderheul@tudelft.nl

Advanced Numerical Methods (WI4212) 6 ECTS

Prof.dr.ir. C Vuik and dr. J Ryan TUD
This course is an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov’s method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogeneous material.
More information : http://ta.twi.tudelft.nl/nw/users/vuik/wi4212/wi4212_eng.html
For more information contact
C Vuik | 015 278 5530 | c.vuik@tudelft.nl

Computational modelling of flow and transport (CTwa4340)

Dr.ir. M Zijlema, TUD
The subjects treated are: Mathematical background of numerical errors and artefacts such as numerical damping, oscillations and instability and how to avoid these phenomena. Accuracy and stability as function of resolution and other numerical parameters. Applications in the field of one-dimensional flow and transport in open channels.
For more information contact
M Zijlema | 015 278 3255 | m.zijlema@tudelft.nl
Computational hydraulics (CTwa5315)

Prof.dr.ir. GS Stelling and dr. JD Pietrzak, TUD
Description: Theory and practice of 2D and 3D nonstationary flow and transport computations.
For more information contact
JD Pietrzak | 015 278 5466 | j.d.pietrzak@tudelft.nl

Computational fluid dynamics

Prof.dr. AEP Veldman, RUG
Introduction to numerical methods for simulating viscous flow problems: discretization on nonuniform grids, convection-diffusion equation, incompressible Navier-Stokes equations, free-surface flow, Burgers’ equation, simulation of turbulent flow (DNS).
For more information contact
AEP Veldman | 050 363 3988 | veldman@math.rug.nl

Boundary-layer flow

Prof.dr. AEP Veldman, RUG
Physical modelling and numerical simulation of laminar and turbulent boundary layers: boundary-layer equations, integral formulation, turbulence modelling, asymptotic structure, flow separation, strong viscous-inviscid interaction.
For more information contact
AEP Veldman | 050 363 3988 | veldman@math.rug.nl

CFD 1 - Incompressible flows (AE4-151)

Dr.ir. MI Gerritsma, TUD
Subjects treated: Introduction to Computational Fluid Dynamics. Classification of partial differential equations and well-posedness. Finite volume methods, finite difference methods, finite element methods, boundary element methods and spectral element methods. For the incompressible Navier-Stokes equations two topics will be treated in depth: the relation between the (hyperbolic) convective terms and the (elliptic/parabolic) diffusive terms, and the role of the pressure in incompressible flows and the ensuing compatibility conditions between velocity and pressure approximation. Examination takes place in the form of an assignment in which the student writes and analyzes an incompressible Navier-Stokes solver. This assignment will be concluded with an oral examination.
For more information contact
MI Gerritsma | 015 278 5903 | m.i.gerritsma@tudelft.nl
Numerical aircraft aerodynamics (AE4-152)

Prof.dr.ir. H Bijl, TUD
Subjects treated: upwind discretization methods for hyperbolic systems of conservation laws; (approximate Riemann solvers, flux limiters, multidimensional upwinding); multigrid-solution methods (nested iteration, non-linear multigrid, damped direction-dependent multigrid for hypersonic flow computations); conditioning of flow equations for low Mach numbers; local grid adaptation; sparse-grid solution methods; level-set methods for two-fluid flows; software (data and program structures, testing).

For more information contact
H Bijl | 015 278 5373 | h.bijl@tudelft.nl

Advanced numerical techniques for fluid flow and structural engineering (AE4-153)

Prof.dr.ir. H Bijl, TUD

For more information contact
H Bijl | 015 278 5373 | h.bijl@tudelft.nl

Application of the Finite Element Method to heat and flow problems

Dr.ir. CCM Rindt, TUE
In this course the general method to construct a numerical solution of a second order partial differential equation with the Finite Element Method (FEM) is elucidated. Practical aspects like automation, quadrature rules and accuracy of the numerical solution are also highlighted. More specifically, the FEM-method is applied to the solution of incompressible flows (Navier-Stokes equations) and thermally driven flows (Boussinesq approach). Besides, several solution methods of the Navier-Stokes equations are presented like the penalty function approach and projection schemes. Finally, some numerical aspects are shown for time-dependent problems. Beside the oral courses, there is also the possibility to practice on some classical fluid dynamic problems like the flow over a backward facing step and the flow around a cylinder.

For more information contact
CCM Rindt | 040 247 2978 | c.c.m.rindt@tue.nl
Modelling of Physical Phenomena (4P560)

Dr.ir. JGM Kuerten, TUE
The subject is the modelling of physical phenomena, i.e. the steps necessary to translate a physical problem into a mathematical model and its solution. For many problems in fluid dynamics the mathematical model is a partial differential equation. In the lecture series a number of problems from thermal and fluid mechanics will be studied in this way. Moreover, attention will be paid to analytical and numerical solution methods. Examples which will be treated are: waves in shallow water, heat flow in a bar and air flow around the wing of an airplane.

For more information contact
JGM Kuerten | 040 247 2362 | j.g.m.kuerten@tue.nl

Advanced Programming in Engineering (1158500 - 5.0 EC)

Prof.dr. S Luding, UT
2nd-3rd quarter 2010-11. Goal of the lecture is to teach the students the basics of various algorithms and methods used everyday in mechanical engineering, civil engineering, and physics. This will go deep into the basics, involving Advanced Computational Programming and Algorithms. The goal is not using commercial software packages or functions from, for example, Matlab, but to understand the Methods “from the inside”. There will be classroom-lectures to teach basics and theory as well as practical exercises where the learned knowledge will be implemented on the computer. Several examples will be treated (we would like to receive ideas of examples which relate this lecture to other courses where there is not time to go that deep into the programming) which build on other lectures (fill in examples or specific courses here). Unique about this lecture is that some of these examples will be treated by different methods in parallel (for example diffusion can be dealt with by finite differences, finite elements, or stochastic methods). Dependent on the number of participants, this will be either done by split groups, or sequentially so that the students get familiar with the strengths and weaknesses of various numerical methods and approaches. Required: Basic Programming Skills (!) and solid Math, Physics, Engineering, Informatics background.

For more information contact
S Luding | 053 489 4212 | s.luding@utwente.nl
Theory of chaos and dynamical systems

Applied Analytical Methods (150950)

Prof.dr. EWC van Groesen, UT
The goals of the course are 1. to learn to recognise variational structures of various kinds in many problems from the physical and technical sciences, and 2. to learn the mathematical methodology and techniques to exploit these structures (in equations and solutions) for a detailed investigation. Students learn how many problems are described by some variational principle (the principle of minimal potential energy, the action principle for dynamical systems), and that dissipative or conservative properties can be recognised by investigating specific functionals. Special solutions, the physical ‘coherent structures’ such as solitary waves (solitons) in fluid dynamics or electromagnetism, can then be characterized and obtained in a variational way. The mathematical methods include the calculus of variations, classical mechanics, dynamical system theory and eigenvalue problems. These methods are introduced and extended to infinite dimensional systems (described by partial differential equations). Most applications will be from fluid dynamics (surface waves) and optics.

Topics:
1. Unconstrained variational problems: Theory of first and second variation, natural boundary conditions; variational structures in nature and dynamics: principle of minimal energy, Lagrangian and Hamiltonian systems.
2. Constrained variational problems: Lagrange’s multiplier rule; Linear Eigenvalue Problems: Rayleigh quotient, comparison theorems.
3. Variational restrictions: Approximations in solutions or model equations by restriction of the functional to suitable subsets. Introduction to numerical methods like FEM and variational consistent modelling.

Appendices: A. Fluid Dynamics | B. Optics | C. Solitons and wave groups

For more information contact
EWC van Groesen | 053 489 3413 | e.w.c.vangroesen@utwente.nl

Advanced Modelling in Science (150910)

Prof.dr. EWC van Groesen, UT
For the content see : www.mastermath.nl/courses/00005/00004.

For more information contact
EWC van Groesen | 053 489 3413 | e.w.c.vangroesen@utwente.nl
Chaos (3T220)

Prof.dr.ir. W van de Water, TUE

Chaos is the disordered behavior of nonlinear systems with just a few degrees of freedom: very simple but nonlinear systems. We will see why the route to chaos is often universal. This universality can be expressed in terms of a renormalisation theory, which expresses the invariance of the dynamics under a change of scale. We will discuss the Feigenbaum–Cvitanovic renormalisation equation for the route to chaos through period doublings. Next, we will walk the road to chaos along the golden mean in the case of competition of nonlinear oscillators. The emphasis will be on systems with dissipation, but we will see a simple geometric description of the route to chaos in Hamiltonian systems. A theory of scales is beautifully illustrated by the concept of fractals. It is possible to give a thermodynamic description of these strange things. We will discuss practical applications to control nonlinear systems and to influence chaos. The course offers fundamental insight in this modern subject, but the emphasis is on practical application in simple systems. Interactive computer simulations of real systems offer a vivid illustration of the more theoretical material. The course also offers a unique exposure to modern literature on chaos: During one half of the course the basic concepts are introduced, and in the other half each participant presents an article on chaos which appeared in the past year in Physical Review Letters. Of course, adequate coaching is offered.

For more information contact
W van de Water | 040 247 3443 | w.v.d.water@tue.nl
Combustion

Chemistry and transport in energy conversion processes (4S580)

Prof.dr. LPH de Goey, TUE and dr LMT Somers, TUE.
More than 80% of our energy is generated by combustion of fossil and future (bio)-fuels in equipment like engines, gas turbines, furnaces in the (process)-industry and burners in domestic and industrial appliances. The physical and chemical processes, which describe the combustion phenomena in the different mentioned appliances, will be treated. After a global description of the different combustion methods and their application, the global balances and the elementary processes in reacting flows will be presented. Ideal reactors, like the perfectly stirred reactor and the homogeneous reactor, form the starting point of the treatment of ignition phenomena. Flames and flame fronts will be discussed afterwards. The movement of premixed flame fronts on Bunsen burners, surface burners and in Otto engines will be analyzed. Non-premixed flame fronts, like on burners, furnaces and Diesel-engines, will be treated afterwards and the course will be finished with an analysis of the influence of combustion processes on the environment. Software for the analysis of simple combustion processes, like perfectly stirred reactors, plug-flow reactors and flat flame fronts will be used in the guided self-study.

Fore more information contact
LPH de Goey | 040 247 2938 or 2140 | l.p.h.d.Goey@tue.nl

Gasturbines (4P700)

Dr.ir. HC de Lange, TUE
The gasturbine is one of the most often used machines in the production of mechanical power. In this course a number of application areas (aero engines, turbochargers, industrial applications) will be discussed. Using the book by Cohen et al. the thermo- and fluidodynamics of turbomachines is studied. First, different systems (using intercooling, regeneration, etc.) are compared using simple thermodynamical theory. They show the applicability and efficiency of different processes. Second, the working principles of both radial and axial compressors are explained based on compressible flow equations (both one- and more dimensional). Using aerodynamical arguments the working of a combined compressor/turbine is discussed, both in the design-point as well as at off-design conditions. Besides the stationary flow considerations, a number of dynamical aspects (acceleration, stall, surge, etc.) will discussed.

Fore more information contact
HC de Lange | 040 247 2129 | h.c.d.lange@tue.nl
Turbulent reacting flows (AP3561)

Prof.dr. DJEM Roekaerts, TUD
In the academic year 2011-2012 no lectures will be given. Guidance of the students is via a small number of discussion meetings with the teacher.
Course Material: Thierry Poinsot and Denis Veynante “Theoretical and numerical combustion”, Edwards, 2005, ISBN: 1-930217-10-2. This text describes basic techniques and recent progress in the field of numerical combustion. Lecture notes or articles on additional topics. Models for interaction between turbulent flow and chemical reaction are treated. The main question addressed is by which method or model the mean properties of the flow can be obtained without having to solve the transport equations in full detail. Such methods are useful in the design of industrial combustion chambers, chemical reactors and in the description of reactions in the atmosphere. In the first part, basic aspects are developed (transport equations, reaction kinetics, non-dimensional numbers and regime diagrams, fundamentals of a statistical description, laminar flames). In the second part a more extensive introduction to turbulent combustion is presented. Methods for handling the closure problems arising in averaged or filtered transport equations are described and evaluated (RANS, LES, flamelet model, probability density function method). Simple application exercises are made. Depending on the specific interest of the student, additional topics can be added.

For more information contact
DJEM Roekaerts | 015 278 2470 | d.j.e.m.roekaerts@tudelft.nl

Non-linear differential equations (WI4019TU)

Dr.ir. WT van Horssen, TUD
1st semester, second quarter.

For more information contact
WT van Horssen | 015 278 3524 | w.t.vanhorssen@tudelft.nl
Advanced combustion diagnostics using laser techniques (4P620)

Dr. NJ Dam, TUE
The main goal of this course is to achieve knowledge and understanding of the use and applications of various laser-optical techniques for diagnostics of high temperature systems in general, and various combustion systems in detail. Of specific interest is to develop insight into different non-intrusive techniques for species concentration measurements, temperature measurements and methods for particle characterization in high temperature environments. After a brief overview of laser-optical diagnostics techniques and an introduction to basic molecular spectroscopy and optical-laser instrumentation, the course involves the following subjects:
- Diagnostics of soot characterization by scattering/extinction and Laser-Induced Incandescence (LII);
- Theory and fundamentals of Laser-Induced Fluorescence followed by thermometry and imaging applications;
- Rayleigh and Raman scattering for species concentration measurements and thermometry;
- Non-linear optical techniques, e.g. Four-Wave Mixing techniques and Polarization spectroscopy for minor species detection;
- Finally an overview of emerging techniques, e.g. Ballistic imaging for diagnostics in dense sprays and picosecond LIDAR measurements for spatially resolved measurements in environments with limited optical access.

For more information contact
NJ Dam | 040 247 9111 | n.j.dam@tue.nl

Engines: Modeling and analysis

LMT Somers, TUE
In this lecture series the student will apply the first law of thermodynamics to the general systems of reacting mixtures. The course covers aspects related to cycle simulation tools (modeling) and analysis approaches for engine experiments (analysis). Modeling: a matlab based computer program to simulate a real engine cycle using a modeled combustion progress (Wiebe-like). The oral lectures are short and only meant to give a concise introduction to the problem. A systematic approach is used to increase the complexity in a gradual way through the organization of the lectures series. Emphasis is not on numerics but on physics. Analysis: experiments performed on a Heavy-Duty diesel engine (12.4l DAF) will be analyzed. Using the same first law analysis as above, the Sankey diagram will be determined and engine parameters like thermal efficiency, BMEP etc, computed. A so-called heat-release model is developed. The course is mainly in hands-on exercise and a notebook and Matlab are required. Final term: written report .

For more information contact
LMT Somers | 040 247 2107 | l.m.t.somers@tue.nl
Fuels and Lubes (4N850)

Dr.ir. CCM Luijten, ir. HJ van Leeuwen, dr.ir. MD Boot

Geopolitical, environmental and societal factors are forcing the automotive industry to develop more efficient and cleaner burning engines. In current engine design processes, fuels and lubricants are regarded as “facts of life”. However, future requirements in terms of fuel efficiency and emissions, may be easier to meet when the chemical structure of fuels and lubricants is adjusted in a proper way. Therefore, a lot of research is going on worldwide to characterize alternative fuels such as biofuels, synthetic fuels, oxygenated fuels, dual fuelling strategies, and so on. The same holds for lubricants research. In the course, starting from knowledge of the molecular (hydrocarbon) structure of fuels and lubricants available today (plus the likely options for the future), the student will learn to compute or estimate the relevant physical (density, saturation pressure, viscosity) and chemical properties (e.g. auto-ignition, heating value, adiabatic flame temperature). Essential engine processes such as lubrication, spray formation, evaporation, and formation of emissions (such as NOx and soot) in an engine will be discussed with emphasis on which physical, chemical and tribiological properties of fuels and lubricants play a role. The ultimate goal is the ‘reverse engineering’ step: given the requirements to the engine, the student should be able to ‘design’ the proper fuel and lubricant for a given application. Near the end of the course trends in fuels and lubricants are discussed, and further illustrated by a couple of guest lectures by leading experts.

For more information contact
CCM Luijten | 040 247 5347 | c.c.m.luijten@tue.nl

Powertrain components (4AT00)

Dr.ir. CCM Luijten, dr.ir. LMT Somers, dr.ir. T Hofman

This introductory course on automotive power trains (including engine and transmission), covers the basic technology behind automotive vehicle propulsion. In the introductory lecture, basic road load forces will be discussed in order to derive the amount of torque and power a vehicle power train should deliver. Next, the principles of 4-stroke Internal Combustion Engine are discussed (components, kinematics and operating characteristics). Some elements of ICE operation (a.o. gas exchange, cycles, thermo chemistry and fuels, fuel consumption and emissions) are discussed in more depth in order to enable students to make quantitative computations. The course continues by treating the history and basic principles of the automotive drive train and its components. The aim of this part is to obtain a broad (and in some aspects deep) insight in components, systems and system designing of vehicle drive trains. Some basic powertrain modeling techniques will be treated, followed by the somewhat more detailed analysis of the Toyota Prius powertrain. This example and others will be used to explain the challenges that powertrain designers are facing nowadays. The course consists of 18 hours of lectures, with additional practical exercises in the laboratories of Automotive Engineering Science (2x half a day).

For more information contact
CCM Luijten | 040 247 5347 | c.c.m.luijten@tue.nl
Turbulence

Turbulence in hydraulics (CT5312)

Prof.dr.ir. WSJ Uijttewaal TUD

This course is an introduction to turbulence with applications in hydraulics. The subjects treated are: statistical description of turbulence, Reynolds equations, energy equation, turbulent boundary layers, free shear flows, turbulence models, dispersion and diffusion, experimental techniques.

For more information contact

WSJ Uijttewaal | 015 278 1371 | w.s.j.uijttewaal@tudelft.nl

Turbulence A (wb1424A)

Dr.ir. WP Breugem TUD

In this course an introduction is given to the theory of turbulence. The course starts with the treatment of the properties of turbulence and the distinction between laminar and turbulent flows. This is followed by the treatment of linear stability theory applied to Kelvin-Helmholtz instability, the inflection criterion of Rayleigh and the Orr-Sommerfeld equation. Next follows a phenomenological treatment of turbulence, a discussion of Richardson’s energy cascade and the Kolmogorov 1941 theory on the micro and macrostructure of turbulence. The statistical treatment of stochastic processes is discussed and the Reynolds-Averaged Navier-Stokes (RANS) equations are derived. This leads to a discussion of the closure problem for the Reynolds stress and the introduction of the gradient-diffusion hypothesis and K-theory for the turbulent viscosity. The RANS equations are then applied to boundary-free shear flows such as jets and wakes. For jets and wakes an analytical expression for the mean velocity profile can be derived based on an order-of-magnitude analysis and the assumption of self-similarity. Next the RANS equations are applied to wall-bounded shear flows such as channel and pipe flows. Approximate analytical expressions are derived for the mean velocity in the inner and the outer layer. The logarithmic law is derived for the mean velocity in the overlap region. The influence of wall roughness and a streamwise pressure gradient on wall-bounded turbulence is discussed. The transport equations are derived for the mean and the turbulent kinetic energy and related to Richardson’s energy cascade. The effect of buoyancy is explained by means of the flux Richardson number and the Obukhov length. Several popular models are discussed for the turbulent viscosity such as the k-epsilon model. The strengths and weaknesses of these models are demonstrated by means of simulations with a commercial Computational Fluid Dynamics (CFD) package. The concept of Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) is explained. Finally, an introduction is given to energy spectra and correlations of turbulent flows. The -5/3 law for the spectrum of turbulence in the inertial subrange is derived.

For more information contact

WP Breugem | 015 278 8663 | w.p.breugem@tudelft.nl
Advanced Physical Transport Phenomena (TN375-3)

Dr.ir. S Kenjeres, TUD
The covered subjects are: heat diffusion: stationary and instationary transport, moving boundary problems; mathematical methods: separation of variables, Laplace transformation, integral methods; momentum transport: potential flow, creeping flow, boundary layer flow; turbulence modelling; numerical methods in Computational Fluid Dynamics.

For more information contact
S Kenjeres | 015 278 3649| s.kenjeres@tudelft.nl

Turbulence (358001)

Prof.dr. D Lohse, UT
Subjects: Navier-Stokes equations, hydrodynamic instabilities, routes to chaos, transition to turbulence, Rayleigh-Benard convection, Boussinesq equation, fully developed turbulence, Kolmogorov, intermittency, phenomenological models for intermittency, cascade models, Keps model, boundary layer theory, turbulent diffusion.

For more information contact
D Lohse | 053 489 8076 | d.lohse@utwente.nl
Waves and free-surface flows

Unsteady flow in conduits (CT3310)

Dr.ir. RJ Labeur, TUD
Subjects to be treated are: basic equations for long waves in open channels and in closed conduits; categories of long waves in open channels: translatory waves, tides, harbour oscillations, floodwaves in rivers; translatory waves of low and finite height; method of characteristics; harmonic method for sinusoidal wave propagation with linearised damping; flood waves in rivers.

For more information contact
RJ Labeur | 015 278 5069 | r.j.labeur@tudelft.nl

Stratified flows (CT5302)

Dr. JD Pietrzak, TUD

For more information contact
JD Pietrzak | 015 278 5466 | j.d.pietrzak@tudelft.nl

Ocean waves (CT5316)

Dr.ir. LH Holthuijsen, TUD
Subjects to be treated are: concepts from the theory of stochastic processes, energy-density spectrum, wind waves considered as stochastic processes in space and time, statistical properties, development and propagation of wind waves, wave climate, spectral calculations and responses.

For more information contact
LH Holthuijsen | 015 278 4803 | l.h.holthuijsen@tudelft.nl

Physical Oceanography (CT5317)

Dr. JD Pietrzak, TUD
The Free surface flow course will deal with the following topics: The physics of free surface waves; Linear wave theory, non-linear waves; Short waves, shallow water waves; Numerical methods for various wave models, e.g. Delft3D and SWAN.

For more information contact
JD Pietrzak | 015 278 9455 | j.d.pietrzak@tudelft.nl
River Systems (540021)

Drs. JJ Warmink, UT
Introductory into the physical processes in natural river systems. Phenomena in natural river system are explained and described in a qualitative way. The following processes are discussed: meandering, shifting riverbeds, bank erosion, stream roughness and sort processes. This course is a prerequisite for Shallow water flow (540041) and Transport processes and morphology (540042).

For more information contact
JJ Warmink | 053 489 2831 | j.j.warmink@ctw.utwente.nl

Shallow water flow (540041)

Dr.ir. JS Ribberink, UT
In this course steady and unsteady shallow water flows are discussed for rivers, with topics such as backwater curves, flood waves, tidal flows. Dynamic behavior and physical mathematical modeling will be discussed particularly for 1-D flows. Case studies from river management will be used to illustrate flow phenomena and the influence of human interventions. Application of a 1-d river model will be exercised in a computer class.

For more information contact
JS Ribberink | 053 489 2767 | j.s.ribberink@utwente.nl

Transport processes and morphology (540042)

Dr.ir. JS Ribberink, UT
This course involves i) transport processes of dissolved substances and sediment (advection, diffusion, exchange with bottom), ii) morphologic processes, as occur in surface water systems. Understanding and modelling spreading of suspended sediment, bed load of sand or gravel, erosion or sedimentation of the bottom (morphology). Insight in characteristics and dynamic behaviour, particularly for river systems. The basis is formed by 1-D physical mathematical models. Transport processes and morphology, either or not affected by human interventions, will be analysed for practical examples. In a computer exercise, a 1-D (numerical) model will be applied to a particular morphologic river problem.

For more information contact
JS Ribberink | 053 489 2767 | j.s.ribberink@utwente.nl
Marine Systems (540024)

Dr. TAGP van Dijk, UT & Deltares
Introduction to physical processes in a marine environment. The physical processes are described and explained in a qualitative way. The following processes are discussed: behaviour of waves, tide, sediment transport, beach morphology as well as the main characteristics of estuaries, river delta’s, continental shelves and shallow seas. The course Marine Systems provides knowledge for Marine Dynamics II (540081) and Seminar Morphology (540082).

For more information contact
TAGP van Dijk | 053 489 4705 | t.a.g.p.vandijk@utwente.nl

Marine Dynamics (195400800)

Drs. J.L.M. Schretlen (UT)
The first part of this course (Marine Processes) focuses on a quantitative description of marine processes, which were considered in a more qualitatively sense in the course Marine Systems (195400240) . The second part of this course (Coastal & Offshore Engineering) focuses on engineering applications in marine environment, such as coastal protection, harbours, offshore wind farms, etc.

For more information contact
JLM Schretlen | 053 489 2821 | j.l.m.schretlen@utwente.nl

Morphology (195410200)

Prof.dr. SJMH Hulscher, UT
In the course Morphology five topics are discussed that have a relation with morphology of rivers, estuaries, coasts and seas. Physics play an important role in this. Because understanding and predicting morphology is often necessary to support control, the link with practice often comes into play. An example is the widening of the Westerschelde, maintaining the coast line, controlling pipe lines in a dynamic seabed with sand waves. By means of recent articles these topics are studied; the articles are presented by students and the topic is discussed using the associated assignments. Moreover, every student reviews a paper, written by a researcher form the Water Engineering and Management department. This paper is ready to submit or just submitted to a peer-reviewed journal. Finally, every student focuses on a subject, individually or in pairs, which is laid down in a short report and a poster. This poster is presented and commented to other students and lecturers during a final poster session.

For more information contact
SJMH Hulscher | 053 489 4256 | s.j.m.h.hulscher@utwente.nl
Micro-scale fluid mechanics

Microfluidics (WB1429)

Prof.dr.ir. J Westerweel TUD
This course is an introduction to fluid mechanics at small scales. The subjects treated are:
Scaling laws, Navier-Stokes equations for micro-scale gas and liquid flows, for electroosmotic flow, electrophoresis, dielectrophoresis, dispersion and diffusion, capillary effects, experimental techniques, applications in flow control, flow sensors, valves, pumps, mixers, filters, separators, heaters and life science applications.
For more information contact
J Westerweel | 015 278 6887 | j.Westerweel@tudelft.nl
Experimental techniques in fluid mechanics

Experimental techniques in physics of fluids (358002)

Dr. C Sun, UT
In this course we will discuss the most common experimental techniques that are used in fluid dynamics. Specific advantages, but most of all the limitations of certain techniques will be presented. The course is comprised of lectures, informative lab tours, “hands-on” lab tours, short presentations of experts in the course field and partial assignments, based on review articles from specialist literature. The course is completed by performing an experimental assignment, and a written and oral presentation of the results.

Fore more information contact
C Sun | 053 489 2568 | c.sun@tnw.utwente.nl

MSc degree Courses - 45
TUD | 015 278 9111

Mechanical Engineering and Marine Technology

Mechanical Engineering - Mekelweg 2 - 2628 CD Delft

♦ Prof.dr.ir. J Westerweel 015 278 6887 j.westerweel@tudelft.nl
Prof.dr. JCR Hunt 015 278 2904 jcrh@cpom.ucl.ac.uk
Prof.dr.ir. G Ooms 015 278 1176 g.ooms@tudelft.nl
Prof.dr.ir. B Eckhardt 015 278 2904 bruno.eckhardt@physik.uni-marburg.de
♦ Prof.dr.ir. BJ Boersma 015 278 7979 b.j.boersma@tudelft.nl

Marine Technology - Mekelweg 2 - 2628 CD Delft

♦ Prof.dr.ir. RHM Huijsmans 015 278 2889 r.h.m.huijsmans@tudelft.nl
Prof.dr.ir. TJC van Terwisga 015 278 6860 t.v.terwisga@tudelft.nl
da
♦ Prof.dr.ir. C van Rhee 015 278 3973 c.vanrhee@tudelft.nl

Electrical Engineering, Mathematics and Computer Science

Applied Mathematical Analysis - Mekelweg 4 - 2628 CD Delft

♦ Prof.dr.ir. C Vuik 015 278 5530 c.vuik@tudelft.nl
Prof.dr.ir. P Wesseling 015 278 3631 p.wesseling@tudelft.nl
♦ Prof.dr.ir. AW Heemink 015 278 5813 a.w.heemink@tudelft.nl

Applied Science

Multi-Scale Physics - Leeghwaterstraat 39 - 2628 CB Delft

♦ Prof.dr.ir. HEA van den Akker 015 278 5000 h.e.a.vandenakker@tudelft.nl
Prof.dr.ir. S Sundaresan 015 278 5000 sundar@princeton.edu
Prof.dr. AP Siebesma 015 278 4720 a.p.siebesma@tudelft.nl
Prof.dr. HJJ Jonker 015 278 6157 h.j.j jonker@tudelft.nl
♦ Prof.dr.ir. CR Kleijn 015 278 2835 c.r.kleijn@tudelft.nl
♦ Prof.dr. RF Mudde 015 278 2834 r.f.mudde@tudelft.nl
Prof.dr.ir. RAWM Henkes 015 278 1323 r.a.w.m.henkes@tudelft.nl
♦ Prof.dr. DJEM Roekaerts 015 278 2470 d.j.e.m.roekaerts@tudelft.nl
Mathematics and Computer Science
♦ Prof.dr. RMM Mattheij 040 247 2080 r.m.m.mattheij@tue.nl
Prof.dr. F Toschi 040 247 3911 f.toschi@tue.nl
♦ Prof.dr.ir. CJ van Duijn 040 247 2855 c.j.v.duijn@tue.nl
Prof.dr. JJM Slot 040 247 2184 j.j.m.slot@tue.nl
Biomedical Engineering
♦ Prof.dr.ir. FN van de Vosse 040 247 4218 f.n.v.d.vosse@tue.nl
Chemical Engineering
Multiphase Reactors Group
♦ Prof.dr.ir. JAM Kuipers 040 247 4158 j.a.m.kuipers@tue.nl
Chemical Process Intensification
♦ Prof.dr.ir. M van Sint Annaland 040 247 2241 m.v.sintannaland@tue.nl

UT | 053 489 9111 | PO Box 217 - 7500 AE Enschede

Applied Physics
♦ Prof.dr. WJ Briels 053 489 2947 w.j.briels@utwente.nl
♦ Prof.dr. D Lohse 053 489 8076 d.lohse@utwente.nl
Prof.dr. A Prosperetti 053 489 9111 prosperetti@jhu.edu
Prof.dr.ir. L van Wijngaarden 053 489 3086 l.vanwijngaarden@tnw.utwente.nl
Prof.dr. R Verzicco 053 489 2470 r.verzicco@utwente.nl
♦ Prof.dr. F Mugele 053 489 3094 f.mugele@utwente.nl
♦ Prof.dr. R Lammertink 053 489 2063 r.g.h.lammertink@utwente.nl

Electrical Engineering, Mathematics and Computer Science
Mathematical Sciences
♦ Prof.dr.ir. EWC van Groesen 053 489 3413 e.w.c.vangroesen@utwente.nl
♦ Prof.dr.ir. JWW van der Vegt 053 489 5628 j.j.w.vandervegt@utwente.nl
Prof.dr. HJH Clercx 053 489 3408 h.j.h.clercx@utwente.nl
Prof.dr.ir. BJ Geurts 053 489 4125 b.j.geurts@utwente.nl
Prof.dr. JGM Kuerten 040 247 2362 j.g.m.kuerten@tue.nl
Engineering Technology

Mechanical Engineering
镖 Prof.dr.ir. HWM Hoeijmakers 053 489 4838 h.w.m.hoeijmakers@utwente.nl
镖 Prof.dr.ir. A Hirschberg 040 247 2163 a.hirschberg@tue.nl
镖 Prof.dr.ir. ThH van der Meer 053 489 2562 t.h.vandermeer@utwente.nl
镖 Prof.dr. S Luding 053 489 4212 s.luding@ctw.utwente.nl

Water Engineering and Management
镖 Prof.dr. SJMH Hulscher 053 489 4256 s.j.m.h.hulscher@utwente.nl

RUG | 050 363 9111 | PO Box 800 - 9700 AV Groningen

Mathematics and Natural Sciences

Chemistry
镖 Prof.dr.ir. HB Levinsky 050 363 4544 h.b.levinsky@chem.rug.nl

Mathematics
镖 Prof.dr. AEP Veldman 050 363 3988 veldman@math.rug.nl

UL | 071 527 5505 | PO Box 9506 - 2300 RA Leiden

Mathematics and Natural Sciences

Kamerlingh Onnes Lab
镖 Prof.dr. M van Hecke 071 527 5482 mvhecke@physics.leidenuniv.nl

Mathematical Institute
镖 Prof.dr.ir. B Koren 020 592 4114 barry.koren@math.leidenuniv.nl

WUR | 0317 477 477 | PO Box 9101 - 6701 BH Wageningen

Applied Mathematics

Biometris
镖 Prof.dr. J Molenaar 0317 486042 jaap.molenaar@wur.nl

Experimental Zoology Group

Animal Sciences
镖 Prof.dr.ir. JL van Leeuwen 0317 482267 johan.vanleeuwen@wur.nl

Who and Where - 51
Physics and Astronomy
Institute for Marine and Atmospheric Research Utrecht (IMAU)
♦ Prof. dr. LRM Maas 0222 369 419 maas@nioz.nl

Board of Directors
Prof. dr. ir. G Lodewijks (TUD, Chairman) 015 278 9111 g.lodewijks@tudelft.nl
Ir. AJ Dalhuijzen (VSL) 015 269 1500 adalhuijzen@vsl.nl
Prof. dr. ir. CR Kleijn (TUD) 015 278 2835 c.r.kleijn@tudelft.nl
Prof. dr. ir. J JW van der Vegt (UT) 053 489 5628 j.j.w.vandervegt@utwente.nl
Prof. dr. ir. GMW Kroesen (TUE) 040 247 4357 g.m.w.kroesen@tue.nl

Management Team
Prof. dr. ir. GJ van Heijst (TUE) 040 247 2722 g.j.f.v.heijst@tue.nl
Prof. dr. D Lohse (UT) 053 489 8076 d.lohse@utwente.nl
Prof. dr. ir. J Westerweel (TUD) 015 278 6887 j.westerweel@tudelft.nl

Industrial Board
Ir. Veraar (TNO Defence and Safety) 015 284 3395 ronald.veraar@tno.nl
Dr. ir. J Baltussen (AKZO Nobel) 026 366 1479 joop.baltussen@akzonobel-chemicals.com
B Vreman - bert.vreman@akzonobel.com
Ir. A van Berkel (TNO Science & Industry) 055 549 3759 arlij.vanberkel@tno.nl
Ir. AJ Dalhuijzen (VSL) 015 269 1500 adalhuijzen@vsl.nl
Prof. dr. ir. J den Toonder (Philips) 040 274 3306 jaap.dentoonder@philips.com
Dr. RPJ Duursma (Tata Steel) 0251 492 363 rene.duursma@tatasteel.com
Ir. J Longo (ESA/ESTEC) 071 565 4781 jose.longo@esa.int
Ir. G Hommersom (Dow Benelux) 0115 67 4102 ghommersom@dow.com
Dr. ir. J Janssen (Unilever) 010 460 6324 j.janssen@unilever.com
Dr. ir. M Veenman (DSM) 046 476 1240 Maurice.Veenman@dsm.com
Ir. JJ Meerman (Teijin Aramid) 088 268 9367 hans.meerman@teijnaramid.com
Prof. dr. ir. AE Mynett (Unesco) 015 285 8580 a.mynett@unesco-ihe.org
Dr. B Oskam (NLR) 020 511 3357 oskam@nlr.nl
Dr. ir. HJ Prins (Marin) 0317 493 405 h.j.prins@marin.nl
Ir. H Reinten (Oce) 077 359 4061 hans.reinten@oce.com
Ir. M Riepen (ASML) 040 268 3000 michel.riepen@asml.nl
Ir. G Saccoccia (ESA/ESTEC) 071 565 4781 giorgio.saccoccia@esa.int
Ir. Van Garrel (NRG Petten) 0224 564 170 vangarrel@ecn.nl
Ir. P Veenstra (Shell) 020 630 3384 peter.veenstra@shell.com
Ir. H Vos (TNO Science & Industry) 015 269 2311 hugo.vos@tno.nl
F Visser (Flowserve) - fvisser@flowserv.com
PhD Students Contact Group

TUD
AJ Greidanus 015 278 4194 a.j.greidanus@tudelft.nl
M Olivero 015 278 9479 m.olivero@tudelft.nl
P van Slingerland 015 278 7290 p.vanslingerland@tudelft.nl
R Malekzadeh 015 278 3210 r.malekzadeh@tudelft.nl
D Violato 015 278 5902 d.violato@tudelft.nl
P Smit 015 278 9111 p.b.smit@tudelft.nl

TUE
BJ Brasjen 040 247 5892 b.j.brasjen@tue.nl
R Zegers 040 247 2393 r.p.c.zegers@tue.nl
HM Slagter 040 247 3685 h.m.slagter@tue.nl

UT
R de Ruiter 053 489 1096 r.deruiter-1@tnw.utwente.nl
D van Gils 053 489 4682 d.p.m.vangils@utwente.nl
W Kranenburg 053 489 2959 w.m.kranenburg@ctw.utwente.nl
DF van Eijkeren 053 489 2482 d.f.vaneijkeren@utwente.nl
AA Verbeek 053 489 2507 a.a.verbeek@utwente.nl

RUG
HJL van der Heiden 050 363 3970 h.j.l.van.der.heiden@rug.nl

LU
- -

UU
- -

JM Burgerscentrum (The Netherlands)
Prof.dr.ir. G Ooms, scientific director 015 278 1176 g.ooms@tudelft.nl
I Hoekstein-Philips, JMBC secretariat 015 278 3216 jmburgerscentrum@tudelft.nl
Mekelweg 2
2628 CD Delft

Burgers Program Maryland
James M Wallace, Professor, Dept. of Mechanical Engineering
www.eng.umd.edu/~wallace
Gemstone Program Director
www.gemstone.umd.edu/
Chair, Burgers Program for Fluid Dynamics
www.burgers.umd.edu/
T 301 314 6695
F 301 314 8469
E wallace@eng.umd.edu
Experimental set-up mounted on the rotating table
*L Del Castelo, HJH Clercx
Eindhoven University of Technology

Air entrapment during wave impact in sloshing experiment (MARIN)
AEP Veldman
University of Groningen

PIV tomographic set-up
V Koschatzky
Delft University of Technology

Prediction of the hydraulic performance of centrifugal pumps
NP Kruyt
Twente University of Technology